California Renewable Diesel Multimedia Evaluation Tier I Report

December 8, 2010 Biodiesel Workshop

Tom McKone, University of California, Berkeley Tim Ginn, University of California, Davis Dave Rice, Consultant to University of California

Renewable Diesel Tier I Elements

- Background
- Study Approach—Life Cycle and Multimedia
- Release Scenarios
- Renewable Diesel Production, Storage, Distribution and Use
- · Renewable Diesel Toxicity
- Transport and Fate
- · Tier I Conclusions

Slide

December 8, 2009

Background

- Currently the majority of biological-source diesel fuels are fatty-acid methyl esters (FAME)
- Renewable diesel is different and now entering the market
- According to the Low-Carbon Fuel Standard (LCFS)
- $\mbox{``...}$ a motor vehicle fuel or fuel additive which is all the following:
- (A) Registered as a motor vehicle fuel or fuel additive under 40 CFR part 79; A-9 (B) Not a mono-alkyl ester;
- (C) Intended for use in engines that are designed to run on conventional diesel fuel; and
- (D) Derived from nonpetroleum renewable resources."

Slide 3

December 8, 2009

🥔 Key LCA Studies Review 🗣

- · US EPA Life Cycle Assessment of Renewable Fuels
 - > As part of its RFS2 rulemaking, EPA made a life cycle assessment of alternative and petroleum transportation fuels
 - > EPA reported fuel use and production emissions
- National Research Council "Hidden Costs of Energy" Study (2009)
 - > Life-cycle damage per vehicle-mile traveled (VMT)
 - > Different combinations of fuels and vehicle technologies
 - > VMT damages were remarkably similar
 - > NRC urged caution interpreting small differences between fuel/vehicle

Slide 7

December 8, 2009

Release Scenarios

- · Normal releases
- > Production emissions (in addition to refinery operation)
 - Hexane or CO₂ released to the air during seed extraction,
 - Odors associated with waste biomass
 - Used process water discharges (pH and trace-chemicals)
 - > Use-phase (combustion) emissions
 - Tailpipe emissions
 - Marine engine water releases
- · Off-normal releases—effectively the same as ULSD
 - > Spills and leaks during production, distribution, and storage
 - Above- or below-ground storage tank & associated piping,
 - Liquid-transportation vehicles--rail tank car, tanker truck, tanker ship
 - ♦ Bulk-fuel transport pipeline

Production, Distribution, Storage and Use

- · Approaches to producing renewable diesel (RD)
 - Hydrotreating vegetable oils or animal fats to make Hydrogenation Derived Renewable Diesel (HDRD)
 - Partially combusting a blomass to get CO/H₂ (syngas) utilizing the Fischer-Tropsch reaction to produce complex hydrocarbons
 - Emerging approaches based on synthesis of hydrocarbons through enzymatic reactions
- Producing HDRD
 - $\succ \ \, \text{Co-processing in a conventional petroleum production stream}$
 - > Dedicated HDRD (or R100) production with distribution, direct use or dilution
- · Specifications for additives to RD expected to be similar to ULSD

Production, Distribution, Storage and Use

- · Combustion emissions studies are ongoing
- Preliminary results suggest Renewable Diesel (RD) emissions & impacts that are within the range of ULSD emissions & impacts
 - > Absence of sulfur and aromatic compounds in pure RD
 - > Pure HDRD fuel showed significant emission benefits for CO, HC, NOx and PM—Secondary PM not yet addressed Below 10% RD, blends can result in CO and HC reductions, but not PM, NOx
 - > Volumetric fuel consumption is 5% higher because of lower HDRD density
 - > HDRD fuels avoid some biodiesel issues (oxidation, hygroscopicity, fouling, catalyst deactivation, etc).

Toxicity

- · Key challenge
 - RD is not a defined chemical formulation or a defined mixture
- · Limited tests indicate that RD has low relative toxicity
 - Major differences in health and ecological impact between existing diesel and RD blends are more likely to be associated with additives than with the hydrocarbon mix
 - Chemical comparison to conventional diesel is important for determining whether or how much additional toxicity tests are required

Transport and Fate

- · The fate and transport of a fuel and its component chemicals in the environment depend on the multimedia transport properties of its constituent chemicals
- Based on similarities in chemical composition, the multimedia environmental behavior of renewable diesel should be be similar to ULSD
- · Impact of additives to fate and transport need to be evaluated

Tier I Conclusions

- Renewable diesel (RD) is chemically similar to the ultra-low sulfur diesel (ULSD) fuel already in wide use in California
- RD is compatible with existing refining and distribution infrastructure and can be used in current diesel engines without modification
- Pure renewable diesel has reduced aromatic hydrocarbon content
- Limited toxicity testing on rats reveals that pure RD has limited inherent toxicity and unlikely to exceed the inherent toxicity or mutagenicity of standard diesel.
- Life-cycle health impacts of renewable diesel blends are not likely to differ significantly from those of petroleum diesel.

Slide 13

ecember 8 2009

Tier I Conclusions

- Knowledge gaps include
- > Additive impacts
- Production, storage and distribution releases (offnormal)
- > Air emissions toxicity testing
- > Priority list of renewable diesel fuel formulations

Slide 1

December 8, 2009